INHIBITORS OF MYO-INOSITOL MONOPHOSPHATASE UNRELATED TO THE ENZYME SUBSTRATE

S.R. Fletcher*, R. Baker, P.D. Leeson, M. Teall, E.A. Harley and C.I. Ragan

The Neuroscience Research Centre, Merck, Sharp and Dohme Research Laboratories, Terlings Park, Harlow, UK.

(Received 25 March 1992)

Abstract: Hydroxymethylenebisphosphonate derivatives have been found to be competitive inhibitors of *myo*-inositol monophosphatase.

The enzyme *myo*-inositol monophosphatase plays a key role in controlling the phosphoinositide (PI) secondary messenger system¹. Uncompetitive inhibition of this enzyme by lithium has been cited as a possible mode of action of lithium in the treatment of manic depression². We wish to report the discovery of hydroxymethylenebisphosphonate derivatives as effective, competitive inhibitors of *myo*-inositol monophosphatase.

Moderately potent phosphate ester inhibitors have been previously reported³ discovered by our approach based on hydroxyl deletion from the substrate, *myo*-inositol monophosphate. Subsequently, more potent phosphate inhibitors were prepared from considerations based on the observation that 2'-AMP is also a substrate of the enzyme⁴. This approach however is limited to the generation of substrate like inhibitors and the highly charged nature and metabolic instability of such compounds offers little potential for *in vivo* studies. Furthermore, simple phosphate isosteres such as phosphonate and thiophosphate derivatives have been found to lack inhibitory activity. A search for inhibitors unrelated to the enzyme substrate was thus initiated.

Selective screening of phosphonic acid derivatives led to the identification of 1-hydroxyethylidene-1,1-bisphosphonic acid (1) as a weak enzyme inhibitor, IC $_{50}$, 110 μ M 5 . More detailed studies showed that the inhibition is competitive with respect to substrate 6 and the task of optimising this lead was undertaken

Since hydroxymethylenebisphosphonic acids have been extensively studied as metal chelators and certain derivatives are clinically effective as a treatment for osteoporosis⁷ many derivatives are synthetically accessible. It has been shown that whilst treatment of arylketophosphonate esters⁸ with phosphite and triethylamine forms phosphonophosphate esters

the use of di-n-butylamine generally yields hydroxybisphosphonate esters⁹. These are readily deesterified with TMS bromide followed by hydrolysis to give hydroxybisphosphonic acids (Scheme 1). A range of compounds were synthesised in this manner and used to establish SAR for the inhibition of *myo*-inositol monophosphatase (Table) ¹⁰

Scheme 1

ArCOCI
$$\xrightarrow{a}$$
 ArCOPO(OEt)₂ \xrightarrow{b} Ar \xrightarrow{OH} PO(OEt)₂ $\xrightarrow{PO(OEt)_2}$ $\downarrow d,e$ $\downarrow d$

Ar \xrightarrow{H} OPO(OEt)₂ $\downarrow d$

Ar $\xrightarrow{PO(OEt)_2}$ PO(OH)₂ $\downarrow d$

REAGENTS; a, PO(OEt)₃; b, HPO(OEt)₂, nBu₂NH, Et₂O: c, HPO(OEt)₂, Et₃N, Et₂O; d, TMS bromide; e, H₂O.

Replacing the methyl group of (1) with phenyl gives a 3-fold increase in inhibitory potency (2) IC $_{50}$, 29µM. Substitution of the phenyl ring of (2) revealed that chloro- and methoxygroups are tolerated at the 4-position but such substitution does not lead to an improvement in inhibitory potency (Table). The unsubstituted benzyl derivative (6), (IC $_{50}$, 38 µM) was found to have similar potency to the phenyl analogue and the 2,4-dichlorobenzyl derivative (7) was identified as a readily accessible, moderately potent inhibitor of *myo*-inositol monophosphatase, IC $_{50}$, 23 µM. A more significant increase in potency was not found until the introduction of large lipophilic groups at the 4-position of the aromatic ring of 1-hydroxy-1-phenylmethylenebisphosphonic (2) was undertaken. These compounds were prepared via the SN $_{Ar}$ displacement of fluoride from ethyl 4-fluorobenzoate followed by conversion to the hydroxybisphosphonate via the acid chloride (Scheme 2). This led to the identification of the tetralin derivative (8) as a highly potent, competitive enzyme inhibitor, IC $_{50}$, 0.61 µM.

In summary, a series of inhibitors of *myo*-inositol monophosphatase has been identified which are unrelated to the enzyme substrate. This offers the potential for carrying out *m vivo* studies on the effects of competitive inhibitors of *myo*-inositol monophosphatase on the secondary messenger system.

Table
Inhibition Data for Hydroxymethylenebisphosphonic Acid Derivatives

No	R	IC ₅₀ (uM)*
<u>1</u>	СН ₃ -	110
<u>2</u>	\bigcirc	29
<u>3</u>	Me ₂ N -	140
<u>4</u>	MeO (40
<u>5</u>	CI-	36
<u>6</u>	\bigcirc	38
<u>7</u>	CI CI	23
<u>8</u>		0.61

^{*}See Reference 5 for assay conditions

Scheme 2

REAGENTS: a, NaH, DMF, 120°, 2h; b, KOH/MeOH; c, SOCI₂; d, P(OMe)₃; e, HPO(OMe)₂, nBu₂NH, Et₂O; f, TMS bromide; g, H₂O.

References

- (1) Berridge, M.J; Irvine, R.F., Nature, 1989, 341, 197.
- (2) Drummond, A H., Trends Pharmacol. Sci., 1987, 8 129
- (3) Baker, R; Leeson, P.D.; Liverton, N.J.; Kulagowski, J.J., J. Chem. Soc., Chem. Commun., 1990, 462.
- (4) Baker, R.; Carrick, C.; Leeson, P.D.; Lennon, I.C.; Liverton, N.J., <u>J. Chem. Soc., Chem. Commun.</u>, 1991, 298.
- (5) IC₅₀ determinations at 0.1 M myo-inositol-1-phosphate concentrations (n=3) were carried out using recombinant bovine myo-inositol monophosphatase. Diehl, R.E; Whiting, P; Potter, J; Gee, N; Ragan, C.I; Linemeyer, D; Schoepfer, R; Bennett, C, Dixon, R.A.F. J. Biol. Chem., 1990, 5946.
- (6) IC₅₀ determinations at varying substrate concentrations showed the competitive nature of the inhibition with respect to myo-inositol-1-phosphate.
- (7) Hilderbrand, R.L (Ed), The Role of Phosphonates in Living Systems, CRC Press (1983).
- (8) Berlin, K.D.; Taylor, H.N. J. Org. Chem., 1964, 3862.
- (9) Nguyen, L.M; Niesor, E; Bentzen, C.L, J. Med. Chem., 1987, 30, 1426.
- (10) The hydoxybisphosphonate derivatives were prepared as *bis*-anisidine salts and satisfactory CHN data were obtained.